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Abstract To simulate the contact nonlinearity in 2D solid
problems, a contact analysis approach is formulated using
incremental form of the subdomain parametric variational
principle (SPVP). The formulation is based on a linearly
conforming radial point interpolation method (LC-RPIM)
using nodal integration technique. Contact interface equa-
tions are also presented using a modified Coulomb frictional
contact model and discretized by contact point-pairs. In the
present approach, the global discretized system equations are
transformed into a standard linear complementarity problem
(LCP) that can be solved readily using the Lemke method.
The present approach can simulate various contact behav-
iors including bonding/debonding, contacting/departing, and
sticking/slipping. An intensive numerical study is performed
to validate the proposed method via comparison with the
ABAQUS® and to investigate the effects of the various param-
eters used in computations. These parameters include normal
and tangential adhesions, frictional coefficient, nodal density,
the dimension of local nodal support domain, nodal irregu-
larity, shape parameters used in the radial basis function and
the external load. The numerical results have demonstrated
that the present approach is accurate and stable for contact
analysis of 2D solids.
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1 Introductioin

Contact problems are very important in many fields such
as mechanical and civil engineering [1, 2], which have the
characteristics of geometric and material discontinuity at the
contact interface rather than the usual continuity property
in solid mechanics. The strong nonlinearity is difficult to
solve by the analytical method for problems of complex
boundaries, and hence numerical methods are needed [1–27].
When handling contact constraints or behaviors, we mainly
use penalty method [1–6, 22, 24, 25], Lagrangian multiplier
and augmented lagrangian method [5–11, 19], mathematical
programming [11–13, 26, 27], and other methods [13–18,
20, 21, 23]. Note that all of these methods are based on “ele-
ment” or “mesh” and hence may give rise to problems related
to mesh distortions.

Meshfree methods or element free methods have been
developed in recent years, such as the smooth particle hydro-
dynamics (SPH) method that uses integral representation
of a function and particle approximation to create discret-
ized system equations [28–33], the element-free Galerkin
(EFG) method [34–36] that uses moving least squares (MLS)
approximation and the Galerkin weak form, the reproduc-
ing kernel particle method (RKPM) that ensures the certain
degree of consistency of the integral approximation by mod-
ifying integral kernel function [37], the meshless local Pet-
rov–Galerkin (MLPG) that uses the local Petrov-Galerkin
weak form [38–40], the point interpolation method (PIM)
and radial point interpolation method (RPIM) [41–45]. De-
tailed descriptions and discussions on these meshfree meth-
ods can be found in, for example [28, 29]. The RPIM has the
following advantages:

(1) The shape function has the Kronecker delta property.
(2) The moment matrix used in constructing shape functions

is always invertible for irregular nodes.
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(3) The linear field can be exactly reproduced using RPIM
shape functions augmented with linear polynomials.

However, background cells must be used for Gaussian
integration of the Galerkin weak form. In addition, the RPIM
is not conforming unless the constrainted weak form is used
[28]. Hence, shape parameters need to be properly chosen
to control the inconformability, in order to obtain accurate
results [28]. To overcome these disadvantages, a linearly
conforming radial point interpolation method (LC-RPIM)
is recently developed [46, 47] through gradient smoothing
and nodal integration by means of the stabilized conforming
nodal integration (SCNI) techniques [48, 49]. The LC-RPIM
can exactly pass the standard linear patch test, which is very
stable, accurate and efficient as demonstrated in intensive
case studies [47].

To date, very few contact analyses use meshfree meth-
ods [50, 51] in literature to the best of our knowledge. In
this paper, we confine our attention to static contact analysis
of solid systems composed of rigid and/or deformable sol-
ids in two dimensions, which is formulated in incremental
form through the subdomain parametric variational principle
based on the LC-RPIM and contact interface equations using
a modified Coulomb frictional contact model.

This paper is organized as follows. Section 2 reviews
briefly the procedure of creating shape functions with the
Kronecker delta function property that is very important for
contact analysis and gradient smoothing procedure in the
LC-RPIM. Section 3 describes a contact interface model
and its discretization. Section 4 gives out first the paramet-
ric variational principle in the incremental form of boundary
value problems for a solid, then derives the corresponding
discrete system equations, and finally those equations are
transformed into a set of equations of a standard linear com-
plementarity problem (LCP). Section 5 presents a number of
numerical examples to validate the proposed contact analy-
sis approach, by comparison with ABAQUS® and analytical
formulae. Some conclusions are drawn in the last section.

2 Displacement interpolation and gradient smoothing
in LC-RPIM

The shape functions used in the LC-RPIM are created through
interpolation using local nodes and radial and polynomial
basis functions. Such an interpolation is often used by many
researchers for curve or surface fitting and function approxi-
mation [52, 53]. The gradient of the field function (displace-
ment) at a node is smoothed through an integration over
the local domain such as the Voronoi cell [47, 48], which
satisfies the Gaussian theorem [54] and subsequently guar-
antees the exact linear displacement solution [46, 47]. The
procedure of constructing RPIM shape functions of displace-
ment and gradient smoothing in the LC-RPIM is briefed as
follows.

2.1 Shape function of displacement interpolation

A field function u(x) that is a component of the displacement
can be approximated using both radial and polynomial basis
functions in the form of

u(x) =
n∑

i

Ri (x)ai +
m∑

j

Pj (x)b j

= RT(x)a + PT(x)b (2.1)
where n is the number of field nodes in the local support do-
main for point x; the vector of R(x) = [R1(x), . . . , Rk(x),
. . . , Rn(x)]T is composed of radial basis functions Rk(x) =
R(rk), here rk = [(xk − x)2 + (yk − y)2

] 1
2 is a distance be-

tween the point x and field node xk ; P(x) = [P1(x), P2(x),
. . . , Pm(x)]T is the vector of polynomial basis functions in
2D space xT = [x, y] which has the form P(x) = [1, x, y, x2,

xy, y2, . . .
]T

, and m is the number of terms of the polyno-
mial basis functions. For example, when P(x) = [1, x, y]T

is used, we have m = 3. a = [a1, a2, . . . , an]T and b =
[b1, b2, . . . , bm]T are, respectively, coefficients for R(x) and
P(x). The radial basis functions are usually used to create a
nonsingular moment matrix, and the polynomial basis func-
tions are used to ensure the polynomial field reproducibility
of the generated shape functions [28, 29].

The coefficient vectors a and b are determined by enforc-
ing Eq. (2.1) to be satisfied at all the n field nodes within the
local support domain. Following the lengthy but straightfor-
ward procedure given by [28, 47], we can arrive at
u(x) = N(x)U s (2.2)
where U s = [u1, u2, . . . , un]T is a vector of nodal displace-
ments for nodes in the local support domain, and N(x) =
[N1(x), . . . , Nk(x), . . . , Nn(x)] contains RPIM shape func-
tions for the n local nodes in which Nk(x) is provided by

Nk(x) =
n∑

i

Ri (x)Saik +
m∑

j

Pj (x)Sbjk (2.3)

where Saik is the (i, k) entry of matrix Sa = R−1
M − R−1

M PM

Sb, and Sb jk is the ( j, k) entry of matrix Sb =
(
PT

M R−1
M PM

)−1

PT
M R−1

M . The moment matrices RM and PM are, respec-
tively, consisted of row vectors RT(xi ) and PT(xi ) (i =
1, 2, . . . , n) [28, 29, 47].

The shape function Nk(x) has simple gradient (or first
derivative) such as

∇Nk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∂ Nk(x)

∂x
∂ Nk(x)

∂y

⎫
⎪⎪⎬

⎪⎪⎭

=
n∑

i

∂ Ri (x)

∂ri

Saik

ri

{
x − xi
y − yi

}
+

m∑

j

Sbjk

⎧
⎪⎪⎨

⎪⎪⎩

∂ Pj (x)

∂x
∂ Pj (x)

∂y

⎫
⎪⎪⎬

⎪⎪⎭

(2.4)
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There are many types of radial basis functions (RBFs)
[28, 29, 52, 53]. In the paper the standard multiquadrics ra-
dial basis function (MQ-RBF) with arbitrary real shape param-
eters is used [28, 55]:

R(ri ) = (r2
i + α2

c d2
c

)q
(2.5)

where dc is a characteristic length that is related to nodal
spacing in local support domain, which is usually the average
nodal spacing for all the supporting nodes. For two dimen-
sions it can be estimated using dc = √

As
/(√

ns − 1
)

[28].
Here As is an estimated area covered by the local support
domain and ns is the number of included nodes. αc and q are
two shape parameters for the MQ-RBF, which are real and
needed to be determined by numerical tests [28].

2.2 Gradient smoothing

RPIM shape functions with linear consistency can be ob-
tained by including complete linear polynomial basis func-
tions (m = 3). However, the conventional RPIM may not be
linearly conforming because of the inconformability in the
weak form [46, 47]. So a smoothing operation to the gradient
of the field function need to be performed [46–49]:

∇h ui = ∇h u(xi ) =
∫

�i

∇u(x)�(x − xi )d� (2.6)

where � is a smoothing function, �i is the smoothing domain
(such as Voronoi cell) of the i th field node and �i is its bound-
ary, as shown in Fig. 1.

Using integration by parts, the Eq. (2.6) may be rewritten
as

∇h ui =
∫

�i

n(x)u(x)�(x − xi )d�

−
∫

�i

u(x)∇�(x − xi )d� (2.7)

Fig. 1 Voronoi cell for a field node i in a subdomain �(β) (bdoy β)
of 2D

For simplicity, the following piecewise constant smooth-
ing function is used:

�(x − xi ) =
⎧
⎨

⎩

1

Ai
x ∈ �i

0 x /∈ �i

(2.8)

where Ai is the area of the representative domain of the i th
field node obtained from, for example, the Voronoi cell of
node i as shown in Fig. 1.

Substituting Eq. (2.8) into Eq. (2.7), we obtain

∇h ui = 1

Ai

∫

�i

n(x)u(x)d� (2.9)

Using the trapezoidal integration with three points on
each edge of the Voronoi cell for field node i , Eq. (2.9) can
then be given in form of

∇h ui = 1

4Ai

nVE
i∑

j=1

LVE
j n j

(
u
(

xs
j

)
+2u

(
xm

j

)
+u
(

xe
j

))

(2.10)

where nVE
i is the number of the edges of the Voronoi cell

associated with the i th node, LVE
j and n j are the length and

outward normal vector of the j th Voronoi edge for field node

i . u
(

xs
j

)
, u
(

xm
j

)
and u

(
xe

j

)
are, respectively, the displace-

ments at the start, middle and end points of the j th Voronoi
edge in counterclockwise direction, as shown in Fig. 1.

Using the RPIM shape functions (m = 3), the average
smoothed gradient matrix B̄i for the i th field node can be
given as

B̄i = B̄(xi)= 1

4Ai

nVE
i∑

j=1

LVE
j n j

(
N
(

xs
j

)
+2N

(
xm

j

)
+N

(
xe

j

))

(2.11)

It has been shown that the use of Eq. (2.11) to compute
the strain matrix is sufficient to obtain exact linear solution
for methods based on the Galerkin weak form [46–49, 56].

3 Contact interface equations

For simplicity, we consider surface-to-surface contact under
the small deformation here. This section describes briefly
a modified Coulomb frictional contact model, then its dis-
cretized form is given out in incremental form using contact
point-pairs together with the RPIM shape functions for dis-
placement interpolation.

3.1 Contact interface model

It is very important to accurately represent the behavior of
a contact interface in a solid system. For example, Fig. 2
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(a) (b)

Fig. 2 A contact interface between arbitrary two bodies β1 and β2. a The reference (or current) configuration at time t . b Position of a closest
point pair on the contact interface at time t + �t under the local and global coordinates
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Fig. 3 Contact interface model. a Normal contact model. b Tangential friction model. c Modified Coulomb frictional contact law

illustrates a potential contact interface �
(β)
CI is composed of

contact surfaces �
(β1)
c and �

(β2)
c from arbitrary two bodies

β1 and β2, respectively, as shown in Fig. 2. Let points x(β1)

and x(β2) on the two contact surfaces �
(β1)
c and �

(β2)
c , respec-

tively, are an arbitrary closest point pair under the reference
(or current) configuration (at time t); u(α) = u(α)

(
x(α)

)
is the

displacement increment in the current interval �t and x̃(α) =
x(α) + u(α) represents the position of x(α) (α = β1, β2) at
time t +�t under the global coordinate. The behavior of the
contact interface can be characterized by the contact traction
and gap of the closest point pair under the local coordinate
as follows.

3.1.1 Normal contact model

From Fig. 2b, the normal gap g̃ncan be given as

g̃n =
(

x̃(β2) − x̃(β1)
)

n

=
[(

x(β2) − x(β1)
)

+
(

u(β2) − u(β1)
)]T

n

= (gt + g
)Tn (3.1)

where gt = x(β2) − x(β1) and g = u(β2) − u(β1) are, respec-
tively, current initial and incremental gaps under the global

coordinate, and n = [nx ny
]T represents the outward normal

vector as shown in Fig. 2.
Considering the normal adhesion, the normal contact

model that governs the relation between the normal contact
traction τ̃n and gap g̃n as shown in Fig. 3a can be represented
as an equality condition of complementarity [57]:

τ̃n g̃n = 0, τ̃n ≥ −an, g̃n ≥ 0 (3.2)

where an is a threshold of normal adhesion for tension, and
the pressure is positive here.

It can be divided into four states as shown in Fig. 3a:

⎧
⎪⎨

⎪⎩

0 > τ̃n > −an(g̃n = 0) normal adhesion
τ̃n = 0 (g̃n > 0) debonding (an > 0)

or departing (an = 0)
τ̃n > 0(g̃n = 0) contacting

(3.3)

Note that this unilateral adhesive contact graph is not
monotone function and has a cusp at (0,−an) [57]. In addi-
tion, normal adhesion is an irreversible phenomenon called
debonding as shown in Fig. 3a [57]. In the absence of normal
adhesion (an = 0), the contact model can be degraded to the
classical unilateral contact.
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3.1.2 Tangential friction model

Similarly, the tangential slip gap g̃s can finally be given as

g̃s = (gt + g
)Ts (3.4)

where s = [−nynx
]T is the tangential vector in the right-

hand rule as shown in Fig. 2b.
The friction model that governs the general relation be-

tween tangential contact traction τ̃s and slip gap g̃s can also
be given as an equality condition of complementarity (see,
Fig. 3b)
(|τ̃s| − τ cr

s

)|g̃s| = 0, |τ̃s| ≤ τ cr
s , |g̃s| ≥ 0 (3.5)

where τ cr
s is a threshold of tangential contact traction for tan-

gential slip. If the friction model is characterized by Tresca
friction [13], we have τ cr

s = as, where as is a threshold of
the tangential adhesion for slipping. For Coulomb friction
[13], τ cr

s = μτ̃n and μ is the frictional coefficient. Further-
more, for Coulomb friction with tangential adhesion [58],
τ cr

s = as + μτ̃n.
The Eq. (3.5) can be decomposed into two states:

{ |τ̃s| < τ cr
s (gs = 0) sticking

τ̃s = ±τ cr
s (gs �= 0) slipping (3.6)

3.1.3 Modified Coulomb frictional contact model

In comparison with material plasticity, the normal contact
and tangential friction models of the contact are very much
similar to the rigid perfectly-plastic constitutive model of
material and can be coupled together. The conformability of
the contact can be given as follows:

f c
(
τ̃
) = [−τ̃n − an, |τ̃s| − as − μτ̃n

]T ≤ 0 (3.7)

f g
(
g̃
) = [g̃n, |g̃s|

]T ≥ 0 (3.8)

f T
c

(
τ̃
)

f g
(
g̃
) = 0 (3.9)

where the notation f c
(
τ̃
)

and f g
(
g̃
)
, respectively, represent

“contact yield function” and “gap function”. The Eq. (3.7) is a
contact yield criterion (modified Coulomb frictional contact
law), which considers the normal and tangential adhesions
in the forms of constant for simplicity, as shown in Fig. 3c.
Note that in the absence of normal and tangential adhesions
(a = 0), this frictional contact model can be degenerated
into the classical Coulomb friction model. The gap function
in Eq. (3.8) includes normal and tangential gaps given out
in Eqs. (3.2) and (3.5), respectively. The Eq. (3.9) represents
the complementarity condition between the contact yield and
gap functions.

Clearly, this contact model can represent all contact behav-
iors. It physically means that when the contact traction does
not satisfy the contact yield criterion, the gap is zero. In other
words, the two bodies are contacting or bonding together at
the normal direction, or sticking together at the tangential
direction as shown in Fig. 3a and b. When the contact trac-
tion satisfies the contact yield criterion, the gap is larger than

zero, or more specifically the two bodies are departing or deb-
onding at the normal direction, or slipping at the tangential
direction as shown in Fig. 3a and b.

For the convenience of computation, upon linearization
the Eqs. (3.7,3.8,3.9) can be given in the form of matrices:

−M̃cτ̃ − k̃ + λ̃ = 0 (3.10)

M̃gδ̃ − �̃ g̃ = 0 (3.11)

λ̃
T
δ̃ = 0, λ̃ ≥ 0, δ̃ ≥ 0 (3.12)

where M̃c =
[

1 μ μ
0 −1 1

]T

, M̃g =
[

1 0 0
0 −1 1

]
, k̃ = k̃(a) =

[an, as, as]T; �̃ = �̃(n) =
[

nx ny
−ny nx

]
is a rotation ma-

trix from global to local coordinates as shown in Fig. 2b,

λ̃ =
[
λ̃n λ̃s+ λ̃s−

]T
is a vector of slack variables [59] denot-

ing residual strengths in the normal, positive and negative tan-
gential directions as shown in Fig. 3a and b. Correspondingly,

δ̃ =
[
δ̃n δ̃s+ δ̃s−

]T
represents gaps at the normal, positive

and negative tangential directions (see Fig. 3a and b).

3.2 Discretized form

Once each body is discretized in a solid system using field
nodes as discussed in Sect. 2, along all discretized surfaces
the contact tractions and deformations must satisfy the condi-
tions of contact compatibility and equilibrium of the system
in accordance with the current contact conditions. For con-
venience, consider a typically discretized contact interface
�

(β)
CI with two equal-length contact surfaces from two rect-

angular bodies β1 and β2 as shown in Fig. 4. For the match-
ing discretization (see Fig. 4a), contact constraints can be
enforced by node-to-node contact as in finite element method
(FEM). For the non-matching discretization (see Fig. 4b), and
assuming that all projected points on the opposite surface of
non-matching nodes along the finer surface (assigned sur-
face �

(β2)
c here) are known, the contact constraints can also

be enforced by node-to-projected point contact. Therefore,
the discretized contact interface can be represented with con-
tact point-pairs (including pairs of node-to-node and node-
to-projected point), and each contact point-pair must satisfy
the constraints given in Eqs. (3.10,3.11,3.12).

For any contact point-pair k on the contact interface �
(β)
CI

as shown in Fig. 4, utilizing the displacement interpolation
the gap increment gk can be given generally as:

gk = u(β2)
k − u(β1)

k

=
[
−N(β1)

k N(β2)
k

][
U (β1)

sk U (β2)
sk

]T

= ↔
N

(β)

k

↔
U

(β)

k (3.13)
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(a)

(b)

Fig. 4 Typically discretized contact interface and point-to-point contact model. a Matching discretization and node-to-node contact model.
b Non-matching discretization and node-to-Projected point contact model

where
↔
N

(β)

k =
[
−N(β1)

k N(β2)
k

]
and

↔
U

(β)

k =
[
U (β1)

sk U (β2)
sk

]T
,

N(βn)
k and U (βn)

sk are, respectively, interpolation shape func-
tions and generalized displacement increment of the kth con-
tact point (node or projected point) on the contact surface of
body βn (n = 1, 2).

Considering τ̃
(β)
k = τ

(β)
tk + τ

(β)
k , τ

(β)
tk and τ

(β)
k are the

initial and incremental contact tractions of the kth contact
point-pair. It has to satisfy the following equations in incre-
mental form:

−M(β)
ck τ

(β)
k + λ

(β)
k = k(β)

k + M(β)
ck τ

(β)
tk (3.14)

M(β)
gk δ

(β)
k − G(β)

k

↔
U

(β)

k = G(β)
tk (3.15)

λ
(β)T
k δ

(β)
k = 0, λ

(β)
k ≥ 0; δ

(β)
k ≥ 0 (3.16)

where M(β)
ck = M̃c

(
μβ

)
, M(β)

gk = M̃g, k(β)
k = k̃

(
aβ

)
,

�
(β)
k = �̃

(
n(β)

k

)
, G(β)

k =�
(β)
k

↔
N

(β)

k , λ
(β)
k =

[
λ

(β)n
k λ

(β)s+
k

λ
(β)s−
k

]T
and δ

(β)
k =

[
δ
(β)n+
k δ

(β)s+
k δ

(β)s−
k

]T
. G(β)

tk =�
(β)
tk g(β)

tk

is the current initial gap for the kth contact point-pair under
the local coordinate, aβ and μβ are the adhesion and fric-

tional coefficient of the contact interface �
(β)
CI .

Assembling all contact contact-pairs on the contact inter-
face �

(β)
CI , we have

−M(β)
c τ (β) + λ(β) = k(β) + M(β)

c τ
(β)
t (3.17)

M(β)
g δ(β) − G(β)

↔
U

(β)

= G(β)
t (3.18)

λ(β)Tδ(β) = 0
(
λ(β) ≥ 0; δ(β) ≥ 0

)
(3.19)

where M(β)
c = diag

[
M(β)

ck

]
and M(β)

g = diag
[

M(β)
gk

]
(k =

1, 2, . . . , n(β)
cp ); G(β) =

[
G(β)

1 , G(β)
2 , . . . , G(β)

n(β)
cp

]T

,
↔
U

(β)

=

∪↔
U

(β)

k

(
k = 1, 2, . . . , n(β)

cp

)
. G(β)

t , τ
(β)
t , k(β), λ(β) and δ(β)

are, respectively, vectors collecting all G(β)
tk , τ

(β)
tk , k(β)

k , λ
(β)
k

and δ
(β)
k (k = 1, 2, . . . , n(β)

cp ), and n(β)
cp is the number of con-

tact point-pairs on the contact interface �
(β)
CI .

Note that, for the contact interface �
(β)
CI , the Eqs. (3.17,

3.18, 3.19), respectively, represent the discretized forms of
the contact yield criterion (modified Coulomb frictional con-
tact law), gap, and equality condition of complementarity.

The functional increment �
(β)
c of the contribution of the

contact interface �
(β)
CI can be given as

�(β)
c =

∫

�
(β)
CI

(�g)Tτd� (3.20)

Using the trapezoidal integration and displacement inter-
polation, �

(β)
c can be written in discrete form:

�(β)
c =

n(β)
cp∑

k=1

↔
U

(β)T

k G(β)T
k τ

(β)
k L(β)

ck

= ↔
U

(β)T
G(β)T L(β)

c τ (β) (3.21)

where L(β)
c = diag

[
L(β)

ck I2

]
(k = 1, 2, . . . , ncp

i j ), L(β)
ck is the

length of the kth contact point-pair on the contact interface
�

(β)
CI as shown in Fig. 4, and I2 is a unit matrix of 2 × 2.
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4 Subdomain parametric variational principle
and discretization

4.1 Weak form of equations for frictional contact

Consider a solid system consisting of nB bodies. At time t
the configuration of the entire system � (domain) is known,
and �(i) (subdomain) represents the configuration of the i th
body bounded by �

(
�(i)

) = �
(i)
u ∪�

(i)
t ∪�

(i)
c , in which �

(i)
u ,

�
(i)
t and �

(i)
c are, respectively, the displacement, traction and

contact boundaries of body i . For body i , the incremental
form of its boundary value equation may be described in the
standard form as follows:

(1) The static equilibrium equation is given as

BTσ (i) + b(i) = 0 in �(i) (4.1)

where σ (i) =
[
σ

(i)
xx , σ

(i)
yy , τ

(i)
xy

]T
and b(i) are, respec-

tively, vectors of the stress increment and body force
density increment for body i .

(2) The geometric continuity equation (or strain–displace-
ment relation) is given as

ε(i) = Bu(i) (4.2)

where ε(i) =
[
ε
(i)
xx , ε

(i)
yy , γ

(i)
xy

]T
and u(i) = [

u(i), v(i)
]T

are vectors of strain increment and displacement incre-
ment.

(3) The constitutional equation is given as

σ (i) = D(i)ε(i) (4.3)

where D(i) is a matrix of elastic constants of the material.
For plane stress problems it is represented with Young’s
modulus Ei and Poisson’s ratio νi as

D(i) = Ei

1 − ν2
i

⎡

⎣
1 νi 0
νi 1 0
0 0 1−νi

2

⎤

⎦ (4.4)

For plane strain problems, the above holds after replac-
ing Ei and νi with Ei

/(
1 − ν2

i

)
and νi

/
(1 − νi ), respec-

tively.
(4) The boundary conditions

The displacement boundary condition can be given as

u(i) = ū(i) on �(i)
u (4.5)

where ū(i) is a given displacement increment at boundary
�

(i)
u .

The traction boundary condition is given as

t(i) = ñσ (i) = t̄(i) on �
(i)
t (4.6)

where t̄(i) is a given traction increment at boundary �
(i)
t , and

ñ =
[

n(i)
x
0

0
n(i)

y

n(i)
y

n(i)
x

]
.

The contact boundary condition is given as

�(i)Tτ (i) = ñσ (i) on �(i)
c (4.7)

where τ (i) is the contact traction increment on the contact
boundary �

(i)
c under the constraints of frictional contact as

given in Eqs. (3.10,3.11,3.12).

4.2 Subdomain parametric variational principle (SPVP)

By applying virtual displacement increment δu(i) to the i th
body under the current configuration, the increment of vir-
tual potential energy δ�

(i)
e and virtual work increment done

by external incremental force (including incremental contact
traction) δW (i)

ext

(
τ (i)
)

are, respectively, given as

δ�(i)
e =

∫

�(i)

δε(i)Tσ (i)d�

=
∫

�(i)

δu(i)Tñσ (i)d� −
∫

�(i)

δu(i)T BTσ (i)d� (4.8)

δW (i)
ext

(
τ (i)
)

=
∫

�(i)

δu(i)Tb(i)d� +
∫

�
(i)
t

δu(i)T t̄(i)d�

+
∫

�
(i)
c

δu(i)T�(i)Tτ (i)d� (4.9)

Since the virtual work increment δW (i)
ext

(
τ (i)
)

is equal to

the increment of virtual potential energy δ�
(i)
e according to

virtual work principle, we have
∫

�(i)

δu(i)T
(

BTσ (i) + b(i)
)

d�

−
∫

�
(i)
t

δu(i)T
(

ñσ (i) − t̄(i)
)

d�

−
∫

�
(i)
c

δu(i)T
(

ñσ (i) − �(i)Tτ (i)
)

d� = 0 (4.10)

From the above equation it is evident that Eqs. (4.1), (4.6)
and (4.7) can be derived because that virtual displacement
increment δu(i) is arbitrary.

Therefore, for body i , the functional of its potential en-
ergy increment �(i)

(
τ (i)
)

can be represented as

�(i)
(
τ (i)
)

= 1

2

∫

�(i)

ε(i)T D(i)ε(i)d�−
∫

�(i)

u(i)Tb(i)d�

−
∫

�
(i)
t

u(i) t̄(i)d�−
∫

�
(i)
c

u(i)T�(i)Tτ (i)d� (4.11)

The parametric variational form [59, 60] of the potential
energy increment for body i can now be derived as
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δ�(i)
(
τ (i)
)

=
∫

�(i)

δε(i)T D(i)ε(i)d�

−
∫

�(i)

δu(i)Tb(i)d� −
∫

�
(i)
t

δu(i)T t̄(i)d�

−
∫

�
(i)
c

δu(i)T�(i)Tτ (i)d� = 0 (4.12)

Note that the contact traction increment τ (i), which is
token as a parametric vector subjected to the constraints given
in Eqs. (3.10, 3.11, 3.12), does not take part in the variation.
Accordingly the variational principle may be named subdo-
main parametric variational principle (SPVP).

4.3 Discrete governing equations

The discretized equation can now be obtained using numer-
ical nodal integration of the LC-RPIM, which gives

δ�(i)
(
τ (i)
)

= δU (i)T

⎧
⎨

⎩

⎛

⎝
n(i)

n∑

j=1

B̃
(i)T
j D(i) B̃

(i)
j A(i)

j

⎞

⎠U (i)

−
⎛

⎜⎝
n(i)

n∑

j=1

N(i)T
j b(i) A(i)

j +
n(i)

t∑

j=1

N(i)T
j t̄(i)j L(i)

j

+
n(i)

bcp∑

j=1

N(i)T
j �

(i)T
j τ

(i)
j L(i)

cj

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
= 0 (4.13)

where U (i) =
[
u(i)

1 , v
(i)
1 , u(i)

2 , v
(i)
2 , . . . , u(i)

n(i)
n

, v
(i)

n(i)
n

]T
. For the

i th body, n(i)
n is the number of its all field nodes, n(i)

t repre-
sents the numbers of nodes on its traction boundary, and n(i)

bcp
is the number of contact point-pairs on its contact bound-
ary. A(i)

j and L(i)
j are, respectively, area and boundary length

possessed by node x(i)
j (the j th nodes in body i), and

N(i)
j = N

(
x(i)

j

)

=
[

N(i j)
1 , N(i j)

2 , . . . , N(i j)
k , . . . N(i j)

n(i j)
d

]
(4.14)

B̃
(i)
j = B̃

(
x(i)

j

)

=
[

B̃
(i j)
1 , B̃

(i j)
2 , . . . , B̃

(i j)
k . . . , B̃

(i j)

n(i j)
g

]
(4.15)

where N(i j)
k =

[
N (i j)

k
0

0
N (i j)

k

]
and N (i j)

k = Nk

(
x(i)

j

)
com-

puted by Eq. (2.3), B̃(i j)
k =

[
B̄(i j)

xk
0

0
B̄(i j)

yk

B̄(i j)
yk

B̄(i j)
xk

]T

and B̄
(i j)
k =

B̄k

(
x(i)

j

)
=
[

B̄(i j)
kx B̄(i j)

ky

]T
obtained by Eq. (2.11). n(i j)

d and

n(i j)
g , respectively, represent the numbers of field nodes used

in creating the LC-RPIM shape functions and gradient smooth-
ing for node x(i)

j .

Invoking δ�(i)
(
τ (i)
) = 0 for any δU (i), we can obtain a

set of linear algebraic equations
⎛

⎝
n(i)

n∑

j=1

B̃
(i)T
j D(i) B̃

(i)
j A(i)

j

⎞

⎠U (i) =
n(i)

n∑

j=1

N(i)T
j b(i) A(i)

j

+
n(i)

t∑

j=1

N(i)T
j t̄(i)j L(i)

j +
n(i)

bcp∑

j=1

N(i)T
j �

(i)T
j τ

(i)
j L(i)

c j (4.16)

or in matrix form

K (i)U (i) − C(i)τ (i) = F(i) (4.17)

in which

K (i) =
n(i)

n∑

j=1

K (i)
e j (4.18)

F(i) =
n(i)

n∑

j=1

F(i)
b j +

n(i)
t∑

j=1

F(i)
t j (4.19)

where C(i) =
[

C(i)
1 , C(i)

2 , . . . , C(i)
k , . . . , C(i)

n(i)
bcp

]
, C(i)

k = N(i)T
j

�
(i)T
j L(i)

c j , K (i)
e j = B̃

(i)T
j D(i) B̃

(i)
j A(i)

j , F(i)
bj = N(i)

j b(i) A(i)
j

and F(i)
t j = N(i)T

j t̄(i)j L(i)
j .

Note that the elastic stiffness matrix K (i) may be singular
if body i is a suspended solid (namely without displacement
boundaries or constraints for rigid body movement) for static
analysis. To avoid such singularity, the stiffness matrix K (i)

in Eq. (4.18) may be modified as follows:

K (i) =
n(i)

n∑

j=1

(
K (i)

e j + K (i)
sd j

)
(4.20)

where K (i)
sd j = α

(i)
sd Ei A(i)

j N(i)T
j N(i)

j is a small artificial damp-
ing matrix (similar to the mass damping matrix for dynamical
analysis) for the j th node in body i that is about α

(i)
sd order

of its elastic stiffness matrix K (i)
e j . α

(i)
sd is a given coefficient

which may be chosen between 10−5 ∼ 10−10 according to
our numerical testing.

Now assembling all discretized equations of all bodies
and contact interfaces, we obtain

K U − Cτ = F (4.21)

−Mcτ + λ = k + Mcτ t (4.22)

Mgδ − GU = Gt (4.23)
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λTδ = 0, λ ≥ 0, δ ≥ 0 (4.24)

where K = diag
[
K (i)

]
(i = 1, 2, . . . , nB); C = [C(1), C(2),

. . . , C(nB )
]
; F = [F(1), F(2), . . . , F(nB )

]T
; U = [U (1),

U (2), . . . , U (nB )
]T

; Mc = diag
[

M(i)
c

]
, Mg = diag

[
M(i)

g

]
,

and Lc = diag
[

L(i)
c

]
(i = 1, 2, . . . , nCI); G = [G(1), G(2),

. . . , G(nCI)
]T

; the column vectors τ , τ t , k, Gt , λ and δ are

composed of τ (i), τ
(i)
t , k(i), G(i)

t , λ(i) and δ(i)(i = 1, 2, . . . ,

nCI), respectively. In addition, C = (G)T Lc. nCI is the num-
ber of all potential contact interfaces.

The Eqs. (4.21,4.22,4.23,4.24) are the global discrete
governing equations for a solid system with frictional con-
tact. For the convenience of solving them, a transformational
treatment is given out as follows.

Note that the stiffness matrix K is symmetric and positive
definite (SPD), and thus we can get

U = K−1(F + Cτ ) (4.25)

Substituting Eq. (4.25) into Eq. (4.23), we may obtain

τ = K̄
−1(

Mcδ − G K−1 F − Gt
)

(4.26)

where K̄ = GC = G K−1GT Lc is again a positive definite
symmetric matrix and reversible.

Then substituting Eq. (4.26) into Eq. (4.22) and consid-
ering the constraints in Eq. (4.24), we have
{

λ = Mδ + q
λTδ = 0, λ ≥ 0, δ ≥ 0

(4.27)

where M = Mc K̄
−1

Mg, q = k + Mcτ t − Mc K̄
−1 (

G K−1

F + Gt ).
It is obvious that the Eq. (4.27) is a standard linear com-

plementarity problem denoted as LCP(q, M). It can be very
readily solved using the conventional LCP algorithm such as
Lemke method and Dantzig method [61].

5 Numerical examples

An intensive numerical study is conducted to validate the
present method. In these examples, MQ-RBF given in Eq.
(2.6) and complete linear polynomial basis functions (m = 3)
are used to construct RPIM shape functions ensuring linear
consistency in the local displacement approximation, and the
local gradients at the field nodes are obtained using Eq. (2.11).
The body force is ignored. Numerical results obtained by
the proposed method are compared with those obtained by
ABAQUS. In the ABAQUS, we use implicit solver under the
condition of small deformation, four-node isoparametric ele-
ments, standard surface-to-surface contact with the options
of “ small sliding” for sliding formulation and “ adjust only
overclosed nodes” for slave node adjustment. The contact
property for tangential behavior is defined as “ frictionless
formulation” or “ friction formulation using Lagrange Mul-
tiplier”. Comparison is also performed with analytical solu-
tion, when it is available.

Fig. 5 Contact of an elastic body on a rigid body. The elastic body is
subjected to a uniform pressure

5.1 Contact of an elastic body on a rigid body

An elastic body in contact with a rigid body shown in Fig. 5
is firstly studied. The rigid and elastic bodies have the dimen-
sions of 10×1 m2 and 8×4 m2, respectively. The elastic body
is subjected to a uniform pressure of 1.0 MPa on its top and
its material parameters are E = 102 MPa and ν = 0.35. The
plane stress problem is considered. Since this is a symmet-
rical problem about y axis, only the right half is modeled.
In the computation, the rigid body is discretized with four
field nodes and the elastic body is discretized with 441 field
nodes, and the finite element (FE) mesh for ABAQUS and
Voronoi cells with different nodal irregularity for LC-RPIM
are shown in Fig. 6.

The irregular nodes are created by altering the coordinates
of the regular nodes using the following equations:
{

x ′ = x + �x · rc · αir
y′ = y + �y · rc · αir

(5.1)

where �x and �y are, respectively, the initial regular nodal
spacings in the x and y directions; rc is a computer-generated
random number between −1.0 to 1.0, and αiris the irregular-
ity factor.

5.1.1 Effect of the nodal density

In this investigation, the upper elastic body is discretized
using three regular nodal patterns including: M1 using 121
of 11 × 11 field nodes, M2 using 441 of 21 × 21 field nodes
and M3 using 961 of 31 × 31 field nodes. The dimension
of the nodal local support domain αs = 2.5 is used to cre-
ate RPIM shape functions, and shape parameters used in the
MQ-RBF are αc = 0.1 and q = 1.05. The contact inter-
face is in the absence of normal and tangential adhesions
(in other words, a = 0). For frictionless contact (μ = 0),
the numerical results of contact pressure and tangential rela-
tive slip obtained using the proposed method and ABAQUS
are plotted in Fig. 7. It is clearly shown that the results of
LC-RPIM agree well with those of ABAQUS. The contact
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Fig. 6 Nodal distribution and Voronoi cells with different nodal irregularity factors for the contact of an elastic body on a rigid body.
a FE mesh. b Voronoi cells (αir = 0.0). c Voronoi cells (αir = 0.2). d Voronoi cells (αir = 0.4)
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Fig. 7 Effect of nodal density with frictionless contact for the contact of an elastic body on a rigid body (αs = 2.5, αc = 0.1, q = 1.05, a = 0,
μ = 0). a Contact pressure. b Tangential relative slip
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Fig. 8 Effect of nodal density with frictional contact (μ = 0.7) for the contact of an elastic body on a rigid body (αs = 2.5, αc = 0.1, q = 1.05,
a = 0). a Contact pressure. b Contact shear stress

pressure is uniformly distributed and equal to the applied
pressure of 1.0 MPa regardless of the nodal density. More-
over, the tangential relative slip is linear as expected. Next,
for frictional contact (μ = 0.7), Fig. 8 illustrates the contact
pressure and shear stress computed using the two methods. It
is shown that the numerical results of LC-RPIM are in good
agreement with those of ABAQUS except slight difference
near the right end of the contact interface, where the con-
tact stress concentration occurs and naturally the numerical
results depend on the nodal density.

5.1.2 Effect of the tangential adhesion and frictional
coefficient

In this study, regularly distributed 441 field nodes are used
as shown in Fig. 6a and b, respectively, for ABAQUS and
LC-RPIM. Other parameters used are listed in Case C0 row
in Table 1. First, numerical results of contact stress and tan-
gential relative slip are plotted in Fig. 9 while varying the tan-
gential adhesion. It is observed that the results of LC-RPIM
agree well with those of ABAQUS. With the increase of the
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Table 1 Parameters used in different cases

Case Dimension of nodal support domain αs Shape parameters in MQ-RBF Nodal irregularity factor αir

αc q

C0 2.5 0.1 1.05 0.0
C1 1.5 0.1 1.05 0.0
C2 3.5 0.1 1.05 0.0
C3 2.5 0.01 1.05 0.0
C4 2.5 0.1 1.05 0.0
C5 2.5 1.0 0.5 0.0
C6 2.5 0.1 1.5 0.0
C7 2.5 0.1 1.05 0.2
C8 2.5 0.1 1.05 0.4
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Fig. 9 Effect of the tangential adhesion for the contact of an elastic body on a rigid body (αs = 2.5, αc = 0.1, q = 1.05, an = 0, μ = 0).
a Contact pressure. b Contact shear stress. c Tangential relative slip
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Fig. 10 Effect of the frictional coefficient for the contact of an elastic Body on a rigid body (αs = 2.5, αc = 0.1, q = 1.05, a = 0). a Contact
pressure. b Contact shear stress. c Tangential relative slip

tangential adhesion from 0.1 MPa to 0.25 MPa, contact stress
concentration gets more prominent as shown in Fig. 9a and
b. At the right end of the contact interface, the maximum nor-
mal contact traction obtained by LC-RPIM is 1–1.5% lower
compared to that of ABAQUS. The maximum value and re-
gion of the tangential relative slip decrease with the increase
of the adhesion as shown in Fig. 9c. Next, in the absence
of adhesion, Fig. 10 plots the contact stress and tangential
relative slip along the contact interface with the change of

its frictional coefficient. It is shown again that the numeri-
cal results of LC-RPIM are in good agreement with those
of ABAQUS. With the increase of the frictional coefficient,
the concentration of contact stress is significantly intensified
as shown in Fig. 10a and b, but the maximum relative slip
value and slip region decrease as shown in Fig. 10c. Note that
the tangential relative slip of the contact interface decreases
with the increase of the tangential adhesion and frictional
coefficient.
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Fig. 11 Effect of the dimension of nodal local support domain, shape parameters in MQ-RBF and nodal irregularity for the contact of a rigid
body located under an elastic body (an = 0, as = 0.15 MPa, μ = 0). a Contact pressure. b Contact shear stress. c Tangential relative slip

5.1.3 Effect of the nodal local support domain, nodal
irregularity and shape parameters

In this investigation, 441 field nodes is used, mechanical
parameters of the contact interface are fixed at as = 0.15 MPa
and μ = 0. Figure 11 illustrates the contact stress and tangen-
tial relative slip obtained using ABAQUS and the proposed
method for different parameters listed in Table 1. It is obvious
that the numerical results of LC-RPIM agree well with those
of ABAQUS. The proposed method is very stable, and its
numerical results are independent of the dimension of nodal
local support domain, nodal irregularity and shape parame-
ters used in MQ-RBF.

5.2 Frictionless contact of an elastic cylinder
on a rigid body

Consider now an infinitely long elastic cylinder in contact
with a rigid body, as shown in Fig. 12a. The plane strain prob-
lem is considered. Only the right half is investigated because
of its symmetry about y axis. FE mesh used for ABAQUS
and Voronoi cells used for LC-RPIM are, respectively, shown
in Fig. 12b and c. Material parameters of the cylinder are
E = 20 MPa and ν = 0.3. For the frictionless contact that
the contact interface is perfectly smooth (a = 0 and μ = 0),
by means of referencing the contact of two same elastic cyl-
inders with identical mechanical parameters, the analytical
solution can be obtained in terms of the contact length and
contact pressure as given in [1]

lc = 2
√

P(1 − ν2)
/
(πE) (5.2)

Pn = P0

√
1 − (x/lc

)2 (5.3)

where lc and Pn are the potential contact area and pressure,
respectively; P0 = 2P

/
(πlc) is the maximum contact pres-

sure and P is the uniform pressure per unit length along the
longitudinal direction.

Fig. 12 Contact of a cylinder on a rigid body. A uniform pressure is
applied at the top. a Mechanical configuration. b FE mesh. c Voronoi
cells

In this investigation, the nodal local support domain and
shape parameters of Case C0 in Table 1 are used for MQ-
RBF. Three loadings are used: P1 = 1.0 MPa, P2 = 1.5 MPa
and P3 = 2.0 MPa. Contact pressure along the contact inter-
face and horizontal displacement of the cylinder at the bot-
tom obtained by the two methods are plotted in Fig. 13. It
is shown that contact pressures obtained using the proposed
LC-RPIM and ABAQUS are basically in good agreement
with the analytical solutions, and the relative errors of the
maximum contact pressure of both LC-RPIM and ABAQUS
increase slightly with the magnitude of the loading as listed
in Table 2. The contact areas obtained by both LCRPIM and
ABAQUS are the same and their relative errors decrease with
the increase of load as listed in Table 3.

5.3 Contact of an elastic square plate with circular hole
sandwiched by two elastic plates

Consider a solid system composed of three elastic bodies,
in which a square plate with circular hole is sandwiched by
two identical plates, as shown in Fig. 14. The dimensions of
these three bodies, applied pressure and material parameters



Contact analysis for solids based on linearly conforming radial point interpolation method 549

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
x/m

0

1

2

3

4

Pn
/M

Pa LC-RPIM(P1)
ABAQUS(P1)
Analytical(P1)
LC-RPIM(P2)
ABAQUS(P2)
Analytical(P2)
LC-RPIM(P3)
ABAQUS(P3)
Analytical(P3)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
x/m

-9

-6

-3

0

u/
10

-3
m

LC-RPIM(P1)
ABAQUS(P1)
LC-RPIM(P2)
ABAQUS(P2)
LC-RPIM(P3)
ABAQUS(P3)

(a) (b)

Fig. 13 Effect of load magnitude. Frictionless contact of a cylinder on a rigid body (αs = 2.5, αc = 0.1, q = 1.05, a = 0, μ = 0). a Contact
pressure. b Horizontal displacement of the cylinder at bottom

Table 2 The maximum contact pressure and relative error for different methods and loads

Case The maximum contact pressure P0/MPa Relative errors (%)

Analytical ABAQUS LCRPIM ABAQUS LCRPIM

P1 2.65 2.67 2.66 0.754717 0.377358
P2 3.24 3.29 3.28 1.54321 1.234568
P3 3.74 3.81 3.81 1.871658 1.871658

Table 3 The contact length and relative errors for different methods and loads

Case The contact areas lc/m Relative errors (%)

Analytical ABAQUS LCRPIM ABAQUS LCRPIM

P1 0.241 0.249 0.249 3.319502 3.319502
P2 0.295 0.298 0.298 1.016949 1.016949
P3 0.340 0.339 0.339 −0.29412 −0.29412

used are also shown in Fig. 14. Because of its symmetry
with respect to y axis, we only study the right part, and the
plane stress problem is considered. The nodal local support
domain and shape parameters of Case C0 in Table 1 are used
in MQ-RBF.

5.3.1 Effect of the nodal density

In this investigation, the contact interfaces are set with the
parameters of a = 0 and μ = 0.5. FE meshes used in ABA-
QUS and corresponding Voronoi cells used in LC-RPIM are
shown in Fig. 15. The contact stress along the contact inter-
faces �

(1)
CI and relative displacement along �

(2)
CI are computed

using the two methods and plotted in Figs. 16 and 17 for
different nodal densities. It is shown that the proposed contact
stresses basically agree well with those of ABAQUS. With
the increase of the nodal density, the concentration of con-
tact stress at the right end of the contact interface increases,
accordingly whereas the actual contract area decreases. Note
that the actual contact areas of the two contact interfaces are
different under a given nodal density by comparing Figs. 16
and 17, which is caused by that the different constraint con-
ditions that the bottom plate is fixed at the bottom and the top
plate is subjected to a uniform pressure on the top. The rel-
ative displacements along the top contact interface obtained

Fig. 14 Contact of an elastic square plate with circular hole sandwiched
by two identical elastic plates. The top plate is subjected to a uniform
pressure
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Fig. 15 Different nodal arrangement. The contact of an elastic square plate with circular hole sandwiched by two identical elastic plates. a FE
Mesh for M1: 316 + 2 × 64 nodes. b FE mesh for M2: 1662 + 2 × 351 nodes. c FE mesh for M3: 6435 + 2 × 1216 nodes. d Voronoi cells for
M1. e Voronoi cells for M2
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Fig. 16 Effect of nodal density on contact stress along �
(1)
CI . The contact of an elastic square plate with circular hole sandwiched by two identical

elastic plates (αs = 2.5, αc = 0.1, q = 1.05, a = 0, μ = 0.5). a contact pressure. b contact shear stress
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Fig. 17 Effect of nodal density on gap along �
(2)
CI . The contact of an elastic square plate with circular hole sandwiched by two identical elastic

plates (αs = 2.5, αc = 0.1, q = 1.05, a = 0, μ = 0.5). a Normal gap. b Tangential slip

using both methods are dependent on the nodal density. Fig-
ure 17 indicates that the numerical results of relative dis-
placement of the top contact interface obtained by LC-RPIM

approach the exact solution from above. However, those by
ABAQUS approach the exact solution from below. The rel-
ative displacements of LC-RPIM for nodal density M3 are



Contact analysis for solids based on linearly conforming radial point interpolation method 551

0 2 4 6 8 10 12
x/m

-2

4

10

P/
M

Pa
Pn(0.0)
Pn(0.3)
Pn(0.5)

Pt(0.0)
Pt(0.3)
Pt(0.5)

0 2 4 6 8 10 12
x/m

-2

2

6

P/
M

Pa

Pn(0.0)
Pn(0.3)
Pn(0.5)

Pt(0.0)
Pt(0.3)
Pt(0.5)

(a) (b)

Fig. 18 Effect of the normal adhesion on contact stress. The contact of an elastic square plate with circular hole sandwiched by two identical
elastic plates (αs = 2.5, αc = 0.1, q = 1.05, as = 10 MPa, μ = 0). a Contact stress along �

(1)
CI . b Contact stress along �

(2)
CI

Fig. 19 Effect of the normal adhesion on deformation. The contact of
an elastic square plate with circular hole sandwiched by two identical
elastic plates (αs = 2.5, αc = 0.1, q = 1.05, as = 10 MPa, μ = 0). a
an = 0. b an = 0.3 MPa. c an = 0.5 MPa

basically in accordance with those of ABAQUS for nodal
density M4.

5.3.2 Effect of the normal adhesion

In the present study, nodal density M3 shown in Fig. 15g is
used for LC-RPIM. as = 10 MPa and μ = 0 are fixed for the
two contact interfaces, and other parameters used are listed
in Table 1 (Case C0). The numerical contact stress along
the two contact interfaces are plotted in Fig. 18 while the
normal adhesion varies. With the increase of the adhesion,
the concentrations of contact stresses along the two contact
interfaces decrease. The top and bottom contact interfaces
adhere together from partly to fully step by step as shown in
Fig. 19.

5.4 Contacts among three elastic bodies

Finally consider a solid system composed of two elastic bod-
ies with initial gap in contacting on an elastic body, and
their dimensions are shown in Fig. 20a. The bottom body

is represented as B(1) with the material parameters of E1 =
10, 000 MPa and ν1 = 0.3. The two top bodies are denoted
as B(2) and B(3) with an initial gap of δ = 0.002 m, and
their material parameters are E2 = 5, 000 MPa, ν2 = 0.35,
E3 = 3, 000 MPa, and ν3 = 0.4. In the system there are
three contact interfaces with notations of �

(1)
CI , �

(2)
CI and �

(3)
CI

as shown in Fig. 20a. In the absence of the adhesion, their
frictional coefficients are 0.7, 0.5 and 0.3, respectively. The
plane strain problem is considered. The applied pressures are
Px = 2 MPa and Py = 5 MPa. The FE mesh for ABAQUS
and Voronoi cells for LC-RPIM are plotted in Fig. 20b and c,
respectively. Other parameters used for LC-RPIM are listed
in Table 1 (Case C0).

Numerical results obtained using the two methods are
plotted in Fig. 21. It is shown that the contact stresses along
the three contact interfaces of LC-RPIM are in good agree-
ment with those of ABAQUS as shown in Fig. 21a, b and
c. In addition, the deformations of the bottom body along
its top surface obtained by LC-RPIM also agree well with
those by ABAQUS as shown in Fig. 21d. It is indicated
that the present method works well for asymmetric contact
problems.

6 Conclusions

In this paper, a numerical approach using LC-RPIM is pre-
sented for 2D contact analysis of a solid system which is
composed of rigid and deformable solids (or bodies). A mod-
ified Coulomb frictional contact model considering the nor-
mal adhesion for tensile and tangential adhesion for slipping
is introduced and its discretized form is given out by con-
tact point-pairs for a contact interface. A subdomain para-
metric variational principle in incremental form of the po-
tential energy is used to construct the governing equation
based on the virtual work principle. The final discretized sys-
tem equations are transformed to a standard form of linear
complementarity problem (LCP). The present approach can
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Fig. 20 Contacts among three elastic bodies. a Configuration (all dimensions in meters). b FEM mesh for ABAQUS. c Voronoi cells for LC-RPIM
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Fig. 21 Numerical results obtained by using the present method and ABAQUS for the contacts among three elastic bodies. a Contact stress along
�

(1)
CI . b Contact stress along �

(2)
CI . c Contact stress along �

(3)
CI . d Displacement along the top surface of body 1

well simulate the behavior of contact nonlinearity including
contact/departing or adhesion/debonding, and sticking/
slipping among the potential contact interfaces in a solid
system.

By comparison with ABAQUS or analytical solution via
several numerical examples, it can be concluded that the pro-
posed method yields accurate and stable solution regardless
of the dimension of the local support domain, nodal irregu-
larity and shape parameters used in MQ-RBF. The method
works well for both symmetric and asymmetric contact
problems.
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